- Reading and displaying an image using OpenCV:
python
import cv2
# Load an image
img = cv2.imread('image.jpg')
# Display the image
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
- Resizing an image using OpenCV:
python
import cv2
# Load an image
img = cv2.imread('image.jpg')
# Resize the image
resized = cv2.resize(img, (500, 500))
# Display the resized image
cv2.imshow('resized', resized)
cv2.waitKey(0)
cv2.destroyAllWindows()
- Converting an image to grayscale using OpenCV:
python
import cv2
# Load an image
img = cv2.imread('image.jpg')
# Convert the image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Display the grayscale image
cv2.imshow('gray', gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
- Applying a Gaussian blur to an image using OpenCV:
python
import cv2
# Load an image
img = cv2.imread('image.jpg')
# Apply a Gaussian blur to the image
blurred = cv2.GaussianBlur(img, (5, 5), 0)
# Display the blurred image
cv2.imshow('blurred', blurred)
cv2.waitKey(0)
cv2.destroyAllWindows()
- Applying a Sobel edge detection filter to an image using OpenCV:
python
import cv2
import numpy as np
# Load an image
img = cv2.imread('image.jpg')
# Convert the image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply a Sobel filter to the image
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
sobel = np.sqrt(sobelx**2 + sobely**2)
# Display the edge-detected image
cv2.imshow('edge-detected', sobel)
cv2.waitKey(0)
cv2.destroyAllWindows()
Note that these are just a few examples of what you can do with image processing in Python. There are many other techniques and libraries available for processing images, depending on your specific needs and goals