- Reading and displaying an image using OpenCV:
python
import cv2
# Load an image
img = cv2.imread('image.jpg')
# Display the image
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
- Resizing an image using OpenCV:
python
import cv2
# Load an image
img = cv2.imread('image.jpg')
# Resize the image
resized = cv2.resize(img, (500, 500))
# Display the resized image
cv2.imshow('resized', resized)
cv2.waitKey(0)
cv2.destroyAllWindows()
- Converting an image to grayscale using OpenCV:
python
import cv2
# Load an image
img = cv2.imread('image.jpg')
# Convert the image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Display the grayscale image
cv2.imshow('gray', gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
- Applying a Gaussian blur to an image using OpenCV:
python
import cv2
# Load an image
img = cv2.imread('image.jpg')
# Apply a Gaussian blur to the image
blurred = cv2.GaussianBlur(img, (5, 5), 0)
# Display the blurred image
cv2.imshow('blurred', blurred)
cv2.waitKey(0)
cv2.destroyAllWindows()
- Applying a Sobel edge detection filter to an image using OpenCV:
python
import cv2
import numpy as np
# Load an image
img = cv2.imread('image.jpg')
# Convert the image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply a Sobel filter to the image
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
sobel = np.sqrt(sobelx**2 + sobely**2)
# Display the edge-detected image
cv2.imshow('edge-detected', sobel)
cv2.waitKey(0)
cv2.destroyAllWindows()
Note that these are just a few examples of what you can do with image processing in Python. There are many other techniques and libraries available for processing images, depending on your specific needs and goals
No comments:
Post a Comment